Extensions 1→N→G→Q→1 with N=C52 and Q=Dic5

Direct product G=NxQ with N=C52 and Q=Dic5
dρLabelID
Dic5xC52100Dic5xC5^2500,37

Semidirect products G=N:Q with N=C52 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C52:Dic5 = He5:C4φ: Dic5/C1Dic5 ⊆ Aut C522520+C5^2:Dic5500,21
C52:2Dic5 = He5:5C4φ: Dic5/C2D5 ⊆ Aut C5210010-C5^2:2Dic5500,8
C52:3Dic5 = He5:6C4φ: Dic5/C2D5 ⊆ Aut C521005C5^2:3Dic5500,11
C52:4Dic5 = C5xD5.D5φ: Dic5/C5C4 ⊆ Aut C52204C5^2:4Dic5500,42
C52:5Dic5 = C53:C4φ: Dic5/C5C4 ⊆ Aut C52100C5^2:5Dic5500,45
C52:6Dic5 = C53:6C4φ: Dic5/C5C4 ⊆ Aut C52204C5^2:6Dic5500,46
C52:7Dic5 = C53:7C4φ: Dic5/C5C4 ⊆ Aut C52100C5^2:7Dic5500,47
C52:8Dic5 = C5xC52:6C4φ: Dic5/C10C2 ⊆ Aut C52100C5^2:8Dic5500,38
C52:9Dic5 = C53:12C4φ: Dic5/C10C2 ⊆ Aut C52500C5^2:9Dic5500,39

Non-split extensions G=N.Q with N=C52 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C52.Dic5 = C50.C10φ: Dic5/C2D5 ⊆ Aut C5210010-C5^2.Dic5500,9
C52.2Dic5 = D5.D25φ: Dic5/C5C4 ⊆ Aut C521004C5^2.2Dic5500,19
C52.3Dic5 = C5xDic25φ: Dic5/C10C2 ⊆ Aut C521002C5^2.3Dic5500,6
C52.4Dic5 = C50.D5φ: Dic5/C10C2 ⊆ Aut C52500C5^2.4Dic5500,10

׿
x
:
Z
F
o
wr
Q
<